Automated Rock Quality Designation Using Convolutional Neural Networks
نویسندگان
چکیده
Abstract Mineral and hydrocarbon exploration relies heavily on geological geotechnical information extracted from drill cores. Traditional drill-core characterization is based purely the subjective expertise of a geologist. New technologies can provide automatic mineral analysis high-resolution core images in non-destructive manner. However, automated rock mass presents significant challenge due to its lack generalization robustness. To date, estimation quality designation (RQD), key parameter for classification, mostly digital image processing techniques with user biases. Alternatively, we propose using computer vision machine learning-based algorithms determine RQD. A convolutional neural network (CNN) used detect classify intact non-intact cores, filter out empty tray areas non-rock objects present trays. The model calculates length detected cores estimates We train CNN thousands sandstone different holes South Australia. proposed method tested 540 rows 90 limestone (~ 1 m each), which produces average error rates 2.58% 3.17%, respectively.
منابع مشابه
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Image Quality Classification for DR Screening Using Convolutional Neural Networks
The quality of input images significantly affects the outcome of automated diabetic retinopathy screening systems. Current methods to identify image quality rely on hand-crafted geometric and structural features, that does not generalize well. We propose a new method for retinal image quality classification (IQC) that uses computational algorithms imitating the working of the human visual syste...
متن کاملHierarchical aesthetic quality assessment using deep convolutional neural networks
Aesthetic image analysis has attracted much attention in recent years. However, assessing the aesthetic quality and assigning an aesthetic score are challenging problems. In this paper, we propose a novel framework for assessing the aesthetic quality of images. Firstly, we divide the images into three categories: “scene”, “object” and “texture”. Each category has an associated convolutional neu...
متن کاملAutomated Edge Detection Using Convolutional Neural Network
The edge detection on the images is so important for image processing. It is used in a various fields of applications ranging from real-time video surveillance and traffic management to medical imaging applications. Currently, there is not a single edge detector that has both efficiency and reliability. Traditional differential filter-based algorithms have the advantage of theoretical strictnes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rock Mechanics and Rock Engineering
سال: 2022
ISSN: ['0723-2632', '1434-453X']
DOI: https://doi.org/10.1007/s00603-022-02805-y